Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769424

RESUMO

The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.

2.
Nucleic Acids Res ; 52(1): 474-491, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000387

RESUMO

Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.


Assuntos
Epigenoma , Edição de Genes , Cromatina/genética , Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes/métodos , Regulação da Expressão Gênica
3.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
4.
Genes (Basel) ; 14(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37239317

RESUMO

DNA methylation in neurons is directly linked to neuronal genome regulation and maturation. Unlike other tissues, vertebrate neurons accumulate high levels of atypical DNA methylation in the CH sequence context (mCH) during early postnatal brain development. Here, we investigate to what extent neurons derived in vitro from both mouse and human pluripotent stem cells recapitulate in vivo DNA methylation patterns. While human ESC-derived neurons did not accumulate mCH in either 2D culture or 3D organoid models even after prolonged culture, cortical neurons derived from mouse ESCs acquired in vivo levels of mCH over a similar time period in both primary neuron cultures and in vivo development. mESC-derived neuron mCH deposition was coincident with a transient increase in Dnmt3a, preceded by the postmitotic marker Rbfox3 (NeuN), was enriched at the nuclear lamina, and negatively correlated with gene expression. We further found that methylation patterning subtly differed between in vitro mES-derived and in vivo neurons, suggesting the involvement of additional noncell autonomous processes. Our findings show that mouse ESC-derived neurons, in contrast to those of humans, can recapitulate the unique DNA methylation landscape of adult neurons in vitro over experimentally tractable timeframes, which allows their use as a model system to study epigenome maturation over development.


Assuntos
Epigenoma , Neurônios , Animais , Camundongos , Humanos , Neurônios/metabolismo , Células-Tronco Embrionárias/metabolismo , Metilação de DNA/genética , Encéfalo
5.
Cell ; 185(23): 4428-4447.e28, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318921

RESUMO

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.


Assuntos
Neurogênese , Organoides , Gravidez , Feminino , Humanos , Adulto , Cromatina , Córtex Pré-Frontal , Análise de Célula Única , Redes Reguladoras de Genes
6.
Nat Biotechnol ; 40(12): 1862-1872, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35788565

RESUMO

Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Reprogramação Celular/genética , Redes Reguladoras de Genes/genética , Plantas/genética , Lógica , Recombinases/genética , Biologia Sintética
7.
Genome Biol ; 23(1): 163, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883107

RESUMO

BACKGROUND: Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. RESULTS: Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. CONCLUSIONS: These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Cromatina , Ilhas de CpG , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
8.
NPJ Regen Med ; 7(1): 31, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710627

RESUMO

The impact of aging on intestinal stem cells (ISCs) has not been fully elucidated. In this study, we identified widespread epigenetic and transcriptional alterations in old ISCs. Using a reprogramming algorithm, we identified a set of key transcription factors (Egr1, Irf1, FosB) that drives molecular and functional differences between old and young states. Overall, by dissecting the molecular signature of aged ISCs, our study identified transcription factors that enhance the regenerative capacity of ISCs.

9.
Nat Commun ; 12(1): 3015, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021136

RESUMO

The role of microglia cells in Alzheimer's disease (AD) is well recognized, however their molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4-) microglia from an AD mouse model. Transcriptomics analysis identified different transcriptional trajectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated expression of genes associated with late onset AD. We further showed that the transcriptional program associated with XO4+ microglia from mice is present in a subset of human microglia isolated from brains of individuals with AD. XO4- microglia displayed transcriptional signatures associated with accelerated ageing and contained more intracellular post-synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis. We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using primary human microglia, and BV2 mouse microglial cells. Together, these findings provide insight into molecular mechanisms underpinning the functional diversity of microglia in AD.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Fagocitose/fisiologia , Placa Amiloide/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Placa Amiloide/genética , Transcriptoma
10.
Brain Commun ; 3(1): fcaa235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738444

RESUMO

Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.

11.
Nat Ecol Evol ; 5(3): 369-378, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462491

RESUMO

Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.


Assuntos
Metilação de DNA , Proteína 2 de Ligação a Metil-CpG , Animais , Encéfalo/metabolismo , Genoma , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Vertebrados/genética
12.
Stem Cell Reports ; 15(6): 1246-1259, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296673

RESUMO

Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general.


Assuntos
Loci Gênicos , Células-Tronco Embrionárias Humanas/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteínas Correpressoras/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos
13.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
14.
Nat Neurosci ; 22(12): 2087-2097, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768052

RESUMO

There is currently little information available about how individual cell types contribute to Alzheimer's disease. Here we applied single-nucleus RNA sequencing to entorhinal cortex samples from control and Alzheimer's disease brains (n = 6 per group), yielding a total of 13,214 high-quality nuclei. We detail cell-type-specific gene expression patterns, unveiling how transcriptional changes in specific cell subpopulations are associated with Alzheimer's disease. We report that the Alzheimer's disease risk gene APOE is specifically repressed in Alzheimer's disease oligodendrocyte progenitor cells and astrocyte subpopulations and upregulated in an Alzheimer's disease-specific microglial subopulation. Integrating transcription factor regulatory modules with Alzheimer's disease risk loci revealed drivers of cell-type-specific state transitions towards Alzheimer's disease. For example, transcription factor EB, a master regulator of lysosomal function, regulates multiple disease genes in a specific Alzheimer's disease astrocyte subpopulation. These results provide insights into the coordinated control of Alzheimer's disease risk genes and their cell-type-specific contribution to disease susceptibility. These results are available at http://adsn.ddnetbio.com.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Córtex Entorrinal/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Microglia/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Apolipoproteínas E/metabolismo , Atlas como Assunto , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Masculino , Análise de Sequência de RNA , Regulação para Cima
15.
Nat Ecol Evol ; 3(10): 1464-1473, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31558833

RESUMO

Vertebrates have highly methylated genomes at CpG positions, whereas invertebrates have sparsely methylated genomes. This increase in methylation content is considered a major regulatory innovation of vertebrate genomes. However, here we report that a sponge, proposed as the potential sister group to the rest of animals, has a highly methylated genome. Despite major differences in genome size and architecture, we find similarities between the independent acquisitions of the hypermethylated state. Both lineages show genome-wide CpG depletion, conserved strong transcription factor methyl-sensitivity and developmental methylation dynamics at 5-hydroxymethylcytosine enriched regions. Together, our findings trace back patterns associated with DNA methylation in vertebrates to the early steps of animal evolution. Thus, the sponge methylome challenges previous hypotheses concerning the uniqueness of vertebrate genome hypermethylation and its implications for regulatory complexity.


Assuntos
Epigenoma , Poríferos , Animais , Metilação de DNA , Invertebrados , Vertebrados
16.
Genome Res ; 29(8): 1277-1286, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239280

RESUMO

The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon-encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.


Assuntos
Artrópodes/genética , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Genoma , Retroelementos , Sequência de Aminoácidos , Animais , Artrópodes/classificação , Artrópodes/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Filogenia , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
17.
Genome Res ; 28(8): 1193-1206, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907613

RESUMO

Detection of DNA methylation in the genome has been possible for decades; however, the ability to deliberately and specifically manipulate local DNA methylation states in the genome has been extremely limited. Consequently, this has impeded our understanding of the direct effect of DNA methylation on transcriptional regulation and transcription factor binding in the native chromatin context. Thus, highly specific targeted epigenome editing tools are needed to address this. Recent adaptations of genome editing technologies, including fusion of the DNMT3A DNA methyltransferase catalytic domain to catalytically inactive Cas9 (dC9-D3A), have aimed to alter DNA methylation at desired loci. Here, we show that these tools exhibit consistent off-target DNA methylation deposition in the genome, limiting their capabilities to unambiguously assess the functional consequences of DNA methylation. To address this, we developed a modular dCas9-SunTag (dC9Sun-D3A) system that can recruit multiple DNMT3A catalytic domains to a target site for editing DNA methylation. dC9Sun-D3A is tunable, specific, and exhibits much higher induction of DNA methylation at target sites than the dC9-D3A direct fusion protein. Importantly, genome-wide characterization of dC9Sun-D3A binding sites and DNA methylation revealed minimal off-target protein binding and induction of DNA methylation with dC9Sun-D3A, compared to pervasive off-target methylation by dC9-D3A. Furthermore, we used dC9Sun-D3A to demonstrate the binding sensitivity to DNA methylation for CTCF and NRF1 in situ. Overall, this modular dC9Sun-D3A system enables precise DNA methylation deposition with the lowest off-target DNA methylation levels reported to date, allowing accurate functional determination of the role of DNA methylation at single loci.


Assuntos
Sistemas CRISPR-Cas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Epigênese Genética , Proteínas Recombinantes de Fusão/genética , Sítios de Ligação , Domínio Catalítico/genética , Cromatina/genética , DNA Metiltransferase 3A , Edição de Genes , Regiões Promotoras Genéticas , Ligação Proteica
18.
Nat Commun ; 9(1): 1811, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717194

RESUMO

The original version of this Article contained an error in the spelling of the author Hongfei Li, which was incorrectly given as Fei Hong. This has now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 1341, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29632298

RESUMO

Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment.


Assuntos
Carofíceas/enzimologia , Carofíceas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dinoflagellida/enzimologia , Dinoflagellida/genética , Retroelementos , Metilação de DNA/genética , Epigênese Genética , Evolução Molecular , Inativação Gênica , Filogenia
20.
Cell Rep ; 21(10): 2649-2660, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212013

RESUMO

Our current understanding of induced pluripotent stem cell (iPSC) generation has almost entirely been shaped by studies performed on reprogramming fibroblasts. However, whether the resulting model universally applies to the reprogramming process of other cell types is still largely unknown. By characterizing and profiling the reprogramming pathways of fibroblasts, neutrophils, and keratinocytes, we unveil that key events of the process, including loss of original cell identity, mesenchymal to epithelial transition, the extent of developmental reversion, and reactivation of the pluripotency network, are to a large degree cell-type specific. Thus, we reveal limitations for the use of fibroblasts as a universal model for the study of the reprogramming process and provide crucial insights about iPSC generation from alternative cell sources.


Assuntos
Fibroblastos/citologia , Neutrófilos/citologia , Animais , Reprogramação Celular/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/fisiologia , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Queratinócitos/citologia , Queratinócitos/fisiologia , Neutrófilos/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA